Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Depth profiles of fluorescence-based phytoplankton biomass were sampled using a bbe Moldaenke FluoroProbe (Schwentinental, Germany) during 2014 to 2024 in five drinking water reservoirs in southwestern Virginia, USA. These reservoirs are: Beaverdam Reservoir (Vinton, Virginia), Carvins Cove Reservoir (Roanoke, Virginia), Falling Creek Reservoir (Vinton, Virginia), Gatewood Reservoir (Pulaski, Virginia), and Spring Hollow Reservoir (Salem, Virginia). Beaverdam, Carvins Cove, Falling Creek, and Spring Hollow Reservoirs are owned and operated by the Western Virginia Water Authority as primary or secondary drinking water sources for Roanoke, Virginia, and Gatewood Reservoir is a drinking water source for the town of Pulaski, Virginia. The dataset consists of depth profiles of fluorescence-based phytoplankton biomass measured at the deepest site of each reservoir adjacent to the dam, except in Falling Creek Reservoir, where depth profiles were also taken at four upstream sites ranging from the riverine to the lacustrine zone during 2016-2019 and 2024. Casts were taken approximately weekly from May-October and monthly from November-April. Casts were collected at Beaverdam and Falling Creek Reservoirs during all years (2014-2024); casts were collected at Carvins Cove Reservoir during 2014-2016 and 2018-2023; casts were collected at Spring Hollow Reservoir during 2014-2016 and 2019; and casts were collected at Gatewood Reservoir in 2015-2016.more » « less
-
Free, publicly-accessible full text available December 1, 2025
-
Abstract. Water quality in lakes is an emergent property of complex biotic and abiotic processes that differ across spatial and temporal scales. Water quality is also a determinant of ecosystem services that lakes provide and is thus of great interest to ecologists. Machine learning and other computer science techniques are increasingly being used to predict water quality dynamics as well as to gain a greater understanding of water quality patterns and controls. To benefit the sciences of both ecology and computer science, we have created a benchmark dataset of lake water quality time series and vertical profiles. LakeBeD-US contains over 500 million unique observations of lake water quality collected by multiple long-term monitoring programs across 17 water quality variables from 21 lakes in the United States. There are two published versions of LakeBeD-US: the “Ecology Edition” published in the Environmental Data Initiative repository (https://doi.org/10.6073/pasta/c56a204a65483790f6277de4896d7140, McAfee et al., 2024) and the “Computer Science Edition” published in the Hugging Face repository (https://doi.org/10.57967/hf/3771, Pradhan et al., 2024). Each edition is formatted in a manner conducive to inquiries and analyses specific to each domain. For ecologists, LakeBeD-US: Ecology Edition provides an opportunity to study the spatial and temporal dynamics of several lakes with varying water quality, ecosystem, and landscape characteristics. For computer scientists, LakeBeD-US: Computer Science Edition acts as a benchmark dataset that enables the advancement of machine learning for water quality prediction.more » « lessFree, publicly-accessible full text available January 1, 2026
-
This EDI data package contains instructional materials necessary to teach Macrosystems EDDIE Module 7: Using Data to Improve Ecological Forecasts, a ~3-hour educational module for undergraduates. Ecological forecasting is an emerging approach that provides an estimate of the future state of an ecological system with uncertainty, allowing society to prepare for changes in important ecosystem services. To be useful for management, ecological forecasts need to be both accurate enough for managers to be able to rely on them for decision-making and include a representation of forecast uncertainty, so managers can properly interpret the probability of future events. To improve forecast accuracy, forecasts can be updated with observational data once they become available, a process known as data assimilation. Recent improvements in environmental sensor technology and an increase in the number of sensors deployed in ecosystems have increased the availability of data for assimilation to develop and improve forecasts for natural resource management. In this module, students will explore how assimilating data with different amounts of observation uncertainty and at different temporal frequencies affects forecasts of lake water quality, using data from the U.S. National Ecological Observatory Network (NEON). The flexible, three-part (A-B-C) structure of this module makes it adaptable to a range of student levels and course structures. There are two versions of the module: an R Shiny application which does not require students to code, and an RMarkdown version which requires students to read and alter R code to complete module activities. The R Shiny application is published to shinyapps.io and is available at the following link: https://macrosystemseddie.shinyapps.io/module7/. GitHub repositories are available for both the R Shiny (https://github.com/MacrosystemsEDDIE/module7) and RMarkdown versions (https://github.com/MacrosystemsEDDIE/module7_R) of the module, and both code repositories have been published with DOIs to Zenodo (R Shiny version at DOI 10.5281/zenodo.10903839 and RMarkdown version at DOI 10.5281/zenodo.10909589). Readers are referred to the module landing page for additional information (https://serc.carleton.edu/eddie/teaching_materials/modules/module7.html).more » « less
-
Macrosystems EDDIE Module 5 version 2: Introduction to Ecological Forecasting (Instructor Materials)Ecological forecasting is a tool that can be used for understanding and predicting changes in populations, communities, and ecosystems. Ecological forecasting is an emerging approach which provides an estimate of the future state of an ecological system with uncertainty, allowing society to prepare for changes in important ecosystem services. Ecological forecasters develop and update forecasts using the iterative forecasting cycle, in which they make a hypothesis of how an ecological system works; embed their hypothesis in a model; and use the model to make a forecast of future conditions. When observations become available, they can assess the accuracy of their forecast, which indicates if their hypothesis is supported or needs to be updated before the next forecast is generated. In this Macrosystems EDDIE (Environmental Data-Driven Inquiry & Exploration) module, students will apply the iterative forecasting cycle to develop an ecological forecast for a National Ecological Observation Network (NEON) site. Students will use NEON data to build an ecological model that predicts primary productivity. Using their calibrated model, they will learn about the different components of a forecast with uncertainty and compare productivity forecasts among NEON sites. The overarching goal of this module is for students to learn fundamental concepts about ecological forecasting and build a forecast for a NEON site. Students will work with an R Shiny interface to visualize data, build a model, generate a forecast with uncertainty, and then compare the forecast with observations. The A-B-C structure of this module makes it flexible and adaptable to a range of student levels and course structures. This EDI data package contains instructional materials necessary to teach the module. Intructional materials (instructor manual, introductory presentation for the module, and a presentation to introduce students and instructors to R Shiny) are provided in both pdf and editable formats within a compressed file. The module R Shiny application is available at https://macrosystemseddie.shinyapps.io/module5/. Readers are referred to the module landing page for additional information (https://serc.carleton.edu/eddie/teaching_materials/modules/module5.html) and GitHub repo (https://github.com/MacrosystemsEDDIE/module5) and/or Zenodo data package (Moore et al. 2024; DOI: 10.5281/zenodo.10733117) for the R Shiny application code.more » « less
-
Depth profiles of fluorescence-based phytoplankton biomass were sampled using a bbe Moldaenke FluoroProbe during 2014 to 2023 in five drinking water reservoirs in southwestern Virginia, USA. These reservoirs are: Beaverdam Reservoir (Vinton, Virginia), Carvins Cove Reservoir (Roanoke, Virginia), Falling Creek Reservoir (Vinton, Virginia), Gatewood Reservoir (Pulaski, Virginia), and Spring Hollow Reservoir (Salem, Virginia). Beaverdam, Carvins Cove, Falling Creek, and Spring Hollow Reservoirs are owned and operated by the Western Virginia Water Authority as primary or secondary drinking water sources for Roanoke, Virginia, and Gatewood Reservoir is a drinking water source for the town of Pulaski, Virginia. The dataset consists of depth profiles of fluorescence-based phytoplankton biomass measured at the deepest site of each reservoir adjacent to the dam, except in Falling Creek Reservoir, where depth profiles were also taken at four upstream sites ranging from the riverine to the lacustrine zone during 2016-2019. Casts were taken approximately weekly from May-October and monthly from November-April. Casts were collected at Beaverdam and Falling Creek Reservoirs during all years (2014-2023); casts were collected at Carvins Cove Reservoir during 2014-2016 and 2018-2023; casts were collected at Spring Hollow Reservoir during 2014-2016 and 2019; and casts were collected at Gatewood Reservoir in 2015-2016.more » « less
-
This EDI data package contains instructional materials necessary to teach Macrosystems EDDIE Module 6: Understanding Uncertainty in Ecological Forecasts, a ~3-hour educational module for undergraduates. Ecological forecasting is an emerging approach that provides an estimate of the future state of an ecological system with uncertainty, allowing society to prepare for changes in important ecosystem services. Forecast uncertainty is derived from multiple sources, including model parameters and driver data, among others. Knowing the uncertainty associated with a forecast enables forecast users to evaluate the forecast and make more informed decisions. This module will guide students through an exploration of the sources of uncertainty within an ecological forecast, how uncertainty can be quantified, and steps that can be taken to reduce the uncertainty in a forecast that students develop for a lake ecosystem, using data from the National Ecological Observatory Network (NEON). Students will visualize data, build a model, generate a forecast with uncertainty, and then compare the contributions of various sources of forecast uncertainty to total forecast uncertainty. The flexible, three-part (A-B-C) structure of this module makes it adaptable to a range of student levels and course structures. There are two versions of the module: an R Shiny application which does not require students to code, and an RMarkdown version which requires students to read and alter R code to complete module activities. The R Shiny application is published to shinyapps.io and is available at the following link: https://macrosystemseddie.shinyapps.io/module6/. GitHub repositories are available for both the R Shiny (https://github.com/MacrosystemsEDDIE/module6) and RMarkdown versions (https://github.com/MacrosystemsEDDIE/module6_R) of the module, and both code repositories have been published with DOIs to Zenodo (R Shiny version at https://zenodo.org/doi/10.5281/zenodo.10380759 and RMarkdown version at https://zenodo.org/doi/10.5281/zenodo.10380339). Readers are referred to the module landing page for additional information (https://serc.carleton.edu/eddie/teaching_materials/modules/module6.html).more » « less
-
Abstract Near‐term freshwater forecasts, defined as sub‐daily to decadal future predictions of a freshwater variable with quantified uncertainty, are urgently needed to improve water quality management as freshwater ecosystems exhibit greater variability due to global change. Shifting baselines in freshwater ecosystems due to land use and climate change prevent managers from relying on historical averages for predicting future conditions, necessitating near‐term forecasts to mitigate freshwater risks to human health and safety (e.g., flash floods, harmful algal blooms) and ecosystem services (e.g., water‐related recreation and tourism). To assess the current state of freshwater forecasting and identify opportunities for future progress, we synthesized freshwater forecasting papers published in the past 5 years. We found that freshwater forecasting is currently dominated by near‐term forecasts of waterquantityand that near‐term waterqualityforecasts are fewer in number and in the early stages of development (i.e., non‐operational) despite their potential as important preemptive decision support tools. We contend that more freshwater quality forecasts are critically needed and that near‐term water quality forecasting is poised to make substantial advances based on examples of recent progress in forecasting methodology, workflows, and end‐user engagement. For example, current water quality forecasting systems can predict water temperature, dissolved oxygen, and algal bloom/toxin events 5 days ahead with reasonable accuracy. Continued progress in freshwater quality forecasting will be greatly accelerated by adapting tools and approaches from freshwater quantity forecasting (e.g., machine learning modeling methods). In addition, future development of effective operational freshwater quality forecasts will require substantive engagement of end users throughout the forecast process, funding, and training opportunities. Looking ahead, near‐term forecasting provides a hopeful future for freshwater management in the face of increased variability and risk due to global change, and we encourage the freshwater scientific community to incorporate forecasting approaches in water quality research and management.more » « less
An official website of the United States government
